Efficient estimation of ideal-observer performance in classification tasks involving high-dimensional complex backgrounds.

نویسندگان

  • Subok Park
  • Eric Clarkson
چکیده

The Bayesian ideal observer is optimal among all observers and sets an absolute upper bound for the performance of any observer in classification tasks [Van Trees, Detection, Estimation, and Modulation Theory, Part I (Academic, 1968).]. Therefore, the ideal observer should be used for objective image quality assessment whenever possible. However, computation of ideal-observer performance is difficult in practice because this observer requires the full description of unknown, statistical properties of high-dimensional, complex data arising in real life problems. Previously, Markov-chain Monte Carlo (MCMC) methods were developed by Kupinski et al. [J. Opt. Soc. Am. A 20, 430(2003) ] and by Park et al. [J. Opt. Soc. Am. A 24, B136 (2007) and IEEE Trans. Med. Imaging 28, 657 (2009) ] to estimate the performance of the ideal observer and the channelized ideal observer (CIO), respectively, in classification tasks involving non-Gaussian random backgrounds. However, both algorithms had the disadvantage of long computation times. We propose a fast MCMC for real-time estimation of the likelihood ratio for the CIO. Our simulation results show that our method has the potential to speed up ideal-observer performance in tasks involving complex data when efficient channels are used for the CIO.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Observer efficiency in free-localization tasks with correlated noise

The efficiency of visual tasks involving localization has traditionally been evaluated using forced choice experiments that capitalize on independence across locations to simplify the performance of the ideal observer. However, developments in ideal observer analysis have shown how an ideal observer can be defined for free-localization tasks, where a target can appear anywhere in a defined sear...

متن کامل

Ideal-Observer Performance under Signal and Background Uncertainty

We use the performance of the Bayesian ideal observer as a figure of merit for hardware optimization because this observer makes optimal use of signal-detection information. Due to the high dimensionality of certain integrals that need to be evaluated, it is difficult to compute the ideal observer test statistic, the likelihood ratio, when background variability is taken into account. Methods h...

متن کامل

تعیین ماشین‌های بردار پشتیبان بهینه در طبقه‌بندی تصاویر فرا طیفی بر مبنای الگوریتم ژنتیک

Hyper spectral remote sensing imagery, due to its rich source of spectral information provides an efficient tool for ground classifications in complex geographical areas with similar classes. Referring to robustness of Support Vector Machines (SVMs) in high dimensional space, they are efficient tool for classification of hyper spectral imagery. However, there are two optimization issues which s...

متن کامل

Development of a Robust Observer for General Form Nonlinear System: Theory, Design and Implementation

The problem of observer design for nonlinear systems has got great attention in the recent literature. The nonlinear observer has been a topic of interest in control theory. In this research, a modified robust sliding-mode observer (SMO) is designed to accurately estimate the state variables of nonlinear systems in the presence of disturbances and model uncertainties. The observer has a simple ...

متن کامل

Pattern recognition in correlated and uncorrelated noise.

This study examined how correlated, or filtered, noise affected efficiency for recognizing two types of signal patterns, Gabor patches and three-dimensional objects. In general, compared with the ideal observer, human observers were most efficient at performing tasks in low-pass noise, followed by white noise; they were least efficient in high-pass noise. Simulations demonstrated that contrast-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Optical Society of America. A, Optics, image science, and vision

دوره 26 11  شماره 

صفحات  -

تاریخ انتشار 2009